GENERAL NOTES

1. IF HE ELECTS, THE CONTRACTOR MAY POUR THE BRIDGE END SLABS IN ONE (1) POUR. IF POURED IN ONE POUR, THE TRANSVERSE BARS SHALL BE CONTINUOUS ACROSS LONGITUDINAL JOINTS AND SLAB. IT IS DESIRABLE FOR TRANSVERSE BARS TO CROSS SLAB IN ONE LENGTH WHEN FEASIBLE. WHEN NECESSARY TO USE MORE THAN ONE (1) BAR ACROSS SLAB, LAPS SHALL BE 20" LONG FOR NO. 4 BARS AND 25" FOR NO 5 BARS. ALL LAPS SHALL BE WELL STAGGERED THROUGHOUT THE SLAB AND SHALL BE TIED WITH TWO (2) WIRE TIES.

2. WHEN PAVEMENT IS CONCRETE, THE FINISHED CROWN OF BRIDGE END SLAB SHALL CONFORM TO CROWN OF BRIDGE END SLAB AT END ADJACENT TO PAVEMENT. TRANSVERSE BARS "B" SIZE AND THICKNESS SHALL VARY TRANSVERSLY FROM LONG SIDE TO SHORT SIDE IN A UNIF0RM MANNER. SLABS SHALL BE INCREASED IN THICKNESS ON LONG SIDE, GREATER THAN 45° SKEW - 10" TO 14" THICK

19'-8" LONG FOR 0° SKEW

7. FOR BRIDGES CONSTRUCTED ON 15° AND GREATER SKEW, SEE BRIDGE STANDARD DRAWING No I-131 (SHEETS, 4 & 5 OF 8). FOR BRIDGE RAIL DESIGN BUREAU SPECIAL DRAWING SHALL CORRESPOND TO SPACING SCHEDULE SHOWN FOR TRANSVERSE STEEL PLACEMENT.

4. WHERE THE BRIDGE PAVING SEAT IS CAST IN THE BRIDGE END SPAN, PLACE TWO (2) LAYERS OF GRAPHITE SURFACED SHEET PACKING, 1/16 INCH THICK BETWEEN THE BRIDGE END SLAB AND BRIDGE PAVING SEAT. THE GRAPHITE SURFACES SHALL BE PLACED ADJACENT TO ONE ANOTHER TO AID IN EXPANSION AND CONTRACTION. THE CROWN SECTION.

2. WHEN ROADWAY PAVEMENT IS BITUMINOUS, THE FINISHED CROWN OF BRIDGE END SLAB SHALL CONFORM TO CROWN OF BRIDGE. TRANSITION FROM NORMAL CROWN OF BITUMINOUS PAVEMENT TO CROWN OF BRIDGE END SLAB SHALL BE MADE IN DISTANCE OF 100 FT. FOR THICKNESS VARY

3. WHEN PAVEMENT IS CONCRETE, THE FINISHED CROWN OF BRIDGE END SLAB SHALL CONFORM TO CROWN OF BRIDGE END SLAB AT END ADJACENT TO PAVEMENT. THE CROWN SHALL VARY UNIFORMLY. A BELTED CROWN SECTION WILL REQUIRE THE PLACING OF ADJOINING LANES AT THE SAME TIME. HENCE ONLY A CONTRACTION JOINT WILL BE ALLOWED THROUGH JOINT AND SEAL TO BE ACCORDING TO BRIDGE PLANS.

NOT TO SCALE

INDEX NO

SPECIAL DRAWING NO

TYPICAL LONGITUDINAL SECTION

BARS "A" NO 6 AT 6" OC LENGTHS VARY FOR SKEWED SLABS (SEE NOTE NO.6)

TYPICAL TRANSVERSE SECTION, ROADWAY END

REFERENCE

FOREMEN OF TRANSPORTATION REPRESENTATIVE AUTHORIZED TO APPROVE THIS USE. ANYONE MAKING ANY ORGANIZATION, WITHOUT THE EXPRESSED WRITTEN CONSENT OF THE ALABAMA DEPARTMENT OF TRANSPORTATION AND IS NOT TO BE COPIED, REPRODUCED, ALTERED, OR USED BY ANYONE, OR

American Department Of Transportation, Montgomery, 36130-3050

MONTGOMERY, AL 36130-3050

1409 COLISEUM BOULEVARD

Gulf of Mexico, Florida

by J.F.T. MISH OF TRANSPORTATION

Added Note N0. 7 on 10-07-05

Added to CADD on 04-30-99

EASTERN STATES

In 1989, the ALABAMA DEPARTMENT OF TRANSPORTATION published this drawing to illustrate the design of bridge end slabs for use with barrier rail. The drawing includes detailed specifications for the placement of transverse steel, reinforcement, and concrete thicknesses for various skew angles. It also outlines the process for sawing longitudinal joints and the necessary clearances at the pavement and bridge ends. The drawing is intended for use by the ALABAMA DEPARTMENT OF TRANSPORTATION and is not to be copied, reproduced, altered, or used by anyone without the express written consent of the department.
GENERAL NOTES

1. If no elected, the contractor may pour the slab in two parts in the form of skewed to the form. The transverse joint shall be placed in accordance with the table below. The transverse bars shall be placed in accordance with the table below.

2. Where the bridge paving seat is cast in the bridge end span, scarify the contact surface of the bridge end slab for use with barrier.

3. When roadway pavement is bituminous, the finished crown of bridge end slab shall conform to crown of roadway at end adjacent to pavement. The crown shall vary uniformly. A belted crown section will require the placement of adjoining lanes at the same time, hence only a contraction joint will be allowed through the crown section.

4. The slab thickness shall vary transversely from long to short side, and shall be tied with two (2) wire ties. Longitudinal joints to be sawed.

5. Widths of bridge end slab shown are for two (2) lane travelway. This plan may be used for various widths desired.

6. Longitudinal joints to be keyed if slabs are poured lane at a time. Deformed tie bars or No 5 hook bolts end slab for use with barrier.

7. Transverse steel - skewed slabs

 4 traffic lanes (No 5 bars at 15" OC)
 3 traffic lanes (No 5 bars at 15" OC)
 2 traffic lanes (No 4 bars at 15" OC)

 Transverse steel - 0° skew

 4 traffic lanes (No 5 bars at 15" OC)
 3 traffic lanes (No 4 bars at 15" OC)
 2 traffic lanes (No 4 bars at 15" OC)

BARS "B" TRANSVERSE STEEL (O° SKEW)

BARS "A" NO 6 at 6" OC

NOTE: STEEL SHALL BE SECURELY TIED SO, THAT IT WILL REMAIN IN ITS ORIGINAL CONDITION DURING CONCRETE PLACEMENT.

NOTE: UNAUTHORIZED USE OF THIS DRAWING MAY BE PROSECUTED TO THE FULLEST EXTENT OF THE LAW.

REVISIONS

Added to CADD on 04-30-99
Added to Note no. 7 on 10-07-05

NOT TO SCALE

ALABAMA DEPARTMENT OF TRANSPORTATION
BUREAU OF ENGR.
MONTGOMERY, AL 36130-3050

FOR BRIDGE END SLAB TYPICAL TRANSVERSE SECTION

NOTE: SEAL AT END ADJACENT TO BRIDGE AND TO CROWN OF ROADWAY AT END ADJACENT TO PAVEMENT. THE CROWN SHALL VARY UNIFORMLY. A BELTED CROWN SECTION WILL REQUIRE THE PLACEMENT OF ADJOINING LANES AT THE SAME TIME, HENCE ONLY A CONTRACTION JOINT WILL BE ALLOWED THROUGH THE CROWN SECTION.

DETAIL OF SEAL AT TRANSVERSE JOINT AND SEAL TO BE FILLETED AS REQUIRED.

PLAN OF BRIDGE END SLAB

TYPICAL LONGITUDINAL SECTION

TYPICAL TRANSVERSE SECTION

DETAIL OF SEAL AT EXPANSION JOINT

REFERENCES

NOTE: SEE NOTE NO 4

TYPICAL LONGITUDINAL SECTION

TYPICAL TRANSVERSE SECTION

NOT TO SCALE
BRIDGE END SLAB - TYPICAL TRANSVERSE SECTION, ROADWAY END

GENERAL NOTE

1. **If he elects,** the contractor may pour the bridge end slab in the pour of bridge, i.e., pour the roadway slab as scheduled and then pour bridge end slab. It is permissible to pour bridge end slab in a separate pour. For bridge end slab which is poured as a separate pour, the longitudinal slab shall be placed before pouring the bridge end slab. Additional 2" slump concrete shall be placed on top of either slab.

2. **When dry concrete and joints are poured at the same time, the bridge end slab shall be poured around the longitudinal joint.** See Note 5 of bridge standard (drawing I-131) for bridge standard slab.

3. **Where the bridge paving seat is cast in the bridge end span, scarify the contact surface of the bridge end and the paving seat.**

4. **Where the longitudinal joint is cast in the bridge end span, scarify the contact surface of the bridge end and the paving seat.**

5. **When roadway pavement is bituminous, the finished crown of bridge end slab shall conform to crown of bridge. Transition from normal crown of bituminous pavement to normal crown of bridge end slab shall be made in a distance of 20'-0".**

6. **The longitudinal joint and seal shall be continuous across longitudinal joint and slab.** It is desirable for transverse bars to cross slab in one length. When feasible, when necessary to use more than one (1) bar across slab, laps shall be 20" long for No 4 bars and 25" long for No 5 bars. All laps shall be well staggered throughout the slab and shall be tied with two (2) wire ties.

7. **For bridges constructed on soft and cohesive soils, the bridge end slab shall be designed and placed as required.**

TRANSVERSE STEEL (SKEWED SlABS)

- **4 TRAFFIC LANES (No 5 bars at 10" oc)**
- **3 TRAFFIC LANES (No 5 bars at 15" oc)**
- **2 TRAFFIC LANES (No 4 bars at 15" oc)**

TRANSVERSE STEEL (0° SKEW) (SEE GENERAL NOTE NO 6)

- **4 TRAFFIC LANES (No 5 bars at 15" oc)**
- **3 TRAFFIC LANES (No 4 bars at 15" oc)**
- **2 TRAFFIC LANES (No 4 bars at 15" oc)**

NOT TO SCALE
GENERAL NOTES:

1. If he elects, the Contractor may pour the Bridge End Slab in one (1) pour. If poured in one pour, steel may be placed as shown. Steel shall be placed in the Bridge End Slab in accordance with the requirements of the Plans and Specifications. The Contractor shall carefully note the location of all steel to be placed in the Bridge End Slab.

2. When roadway pavement is bituminous, the finished crown of Bridge End Slab shall conform to the elevation of the Bridge Roadway. See Drawing No. BES 450-O (Index No. 105).

3. Where the Bridge Paving Seat is cast in the Bridge End Slab, place two (2) layers of graphite surfaces, approximately 1" thick, adjacent to one another to aid in expansion and contraction. Surfacings and sheet packing, " thick, between the Bridge End Slab and the Bridge Paving Seat. The Bridge Paving Seat shall be made in a distance of 100 feet.

4. The transverse steel pattern is shown parallel to the Bridge Paving Seat. This steel pattern is for Bridge Paving Seat. The transverse steel pattern may be used for various bridge end slabs. The transverse steel pattern is shown in accordance with the requirements of the Plans and Specifications. The Contractor shall carefully note the location of all steel to be placed in the Bridge End Slab.

5. Longitudinal joints to be keyed if slabs are to be poured one lane at a time. Deformed tie bars or hook bolts across joints shall correspond to spacing shown in schedule for transverse bars. Two (2) wire ties shall be used for No. 5 bars. All laps shall be well staggered throughout the slab and shall be the same. The Contractor shall carefully note the location of all steel to be placed in the Bridge End Slab.

6. The transverse steel pattern is shown parallel to the Bridge Paving Seat. This steel pattern is for Bridge Paving Seat. The transverse steel pattern may be used for various bridge end slabs. The transverse steel pattern is shown in accordance with the requirements of the Plans and Specifications. The Contractor shall carefully note the location of all steel to be placed in the Bridge End Slab.

7. The transverse steel pattern is shown parallel to the Bridge Paving Seat. This steel pattern is for Bridge Paving Seat. The transverse steel pattern may be used for various bridge end slabs. The transverse steel pattern is shown in accordance with the requirements of the Plans and Specifications. The Contractor shall carefully note the location of all steel to be placed in the Bridge End Slab.

8. The transverse steel pattern is shown parallel to the Bridge Paving Seat. This steel pattern is for Bridge Paving Seat. The transverse steel pattern may be used for various bridge end slabs. The transverse steel pattern is shown in accordance with the requirements of the Plans and Specifications. The Contractor shall carefully note the location of all steel to be placed in the Bridge End Slab.

9. The transverse steel pattern is shown parallel to the Bridge Paving Seat. This steel pattern is for Bridge Paving Seat. The transverse steel pattern may be used for various bridge end slabs. The transverse steel pattern is shown in accordance with the requirements of the Plans and Specifications. The Contractor shall carefully note the location of all steel to be placed in the Bridge End Slab.

10. The transverse steel pattern is shown parallel to the Bridge Paving Seat. This steel pattern is for Bridge Paving Seat. The transverse steel pattern may be used for various bridge end slabs. The transverse steel pattern is shown in accordance with the requirements of the Plans and Specifications. The Contractor shall carefully note the location of all steel to be placed in the Bridge End Slab.

11. The transverse steel pattern is shown parallel to the Bridge Paving Seat. This steel pattern is for Bridge Paving Seat. The transverse steel pattern may be used for various bridge end slabs. The transverse steel pattern is shown in accordance with the requirements of the Plans and Specifications. The Contractor shall carefully note the location of all steel to be placed in the Bridge End Slab.
LONGITUDINAL JOINTS
STANDARD PLAIN AND REINFORCED CONCRETE PAVEMENT

TRANSVERSE JOINTS
STANDARD PLAIN AND REINFORCED CONCRETE PAVEMENT

GENERAL NOTE
1. FOR PLAIN CONCRETE PAVEMENT JOINTS DISREGARD REINFORCING DETAILS.
2. ALL SEAL RESERVOIRS AND CONTRACTION JOINTS SHALL BE SAWN.
3. FOR DETAIL OF DOWEL SUPPORT ASSEMBLY SEE APPROPRIATE SPECIAL DRAWING.
4. SILICONE SEALANT SHALL BE TOOLLED IMMEDIATELY AFTER APPLICATION.
5. WHEN CONTRACTOR OPTIONS TO USE ENCAPSULATED ANCHOR, THE REQUIRED LENGTH OF TIE BARS AS SHOWN SHALL BE FULLY EMBEDDED.
6. SEE DOWEL SUPPORT ASSEMBLY DETAILS FOR DOWEL ALIGNMENT TOLERANCES.

NOTE: ALL TIE BARS TO BE GRADE 50 STEEL

ALABAMA DEPARTMENT OF TRANSPORTATION
1409 COLISEUM BOULEVARD
MONTGOMERY, AL 36130-3050

INDEX NO
REFERENCES
NOTE: UNAUTHORIZED USE OF THIS DRAWING MAY BE PROSECUTED TO THE FULLEST EXTENT OF THE LAW.

REFERENCE PROJECT NO
FISCAL YEAR
SHEET NO
NOT TO SCALE

1. FOR PLAIN CONCRETE PAVEMENT JOINTS DISREGARD REINFORCING DETAILS.
2. ALL SEAL RESERVOIRS AND CONTRACTION JOINTS SHALL BE SAWN.
3. FOR DETAIL OF DOWEL SUPPORT ASSEMBLY SEE APPROPRIATE SPECIAL DRAWING.
4. SILICONE SEALANT SHALL BE TOOLLED IMMEDIATELY AFTER APPLICATION.
5. WHEN CONTRACTOR OPTIONS TO USE ENCAPSULATED ANCHOR, THE REQUIRED LENGTH OF TIE BARS AS SHOWN SHALL BE FULLY EMBEDDED.
6. SEE DOWEL SUPPORT ASSEMBLY DETAILS FOR DOWEL ALIGNMENT TOLERANCES.

NOTE: ALL TIE BARS TO BE GRADE 50 STEEL
GENERAL NOTES AND DETAIL DRAWINGS

FULL SLAB REPLACEMENT SKETCH

FULL SLAB REPLACEMENT

- See sketch for recommended full slab replacement

PARTIAL SLAB REPLACEMENT

When damaged area is more than (6) feet from an existing transverse joint

<table>
<thead>
<tr>
<th>APPROXIMATE CONCRETE BOARD LENGTH</th>
<th>MINIMUM REPAIR LENGTH S</th>
<th>MAXIMUM REPAIR LENGTH S</th>
</tr>
</thead>
<tbody>
<tr>
<td>15'</td>
<td>20'</td>
<td>20'</td>
</tr>
<tr>
<td>20'</td>
<td>15'</td>
<td>16'</td>
</tr>
<tr>
<td>40'</td>
<td>12'</td>
<td>16'</td>
</tr>
</tbody>
</table>

SEE SHEET 3 OF 3

NOT TO SCALE
EXISTING TRANSVERSE JOINT

EXISTING JOINT LONGITUDINAL

EXISTING SHOULDER

EXISTING TRANSVERSE JOINT

FULL-DEPTH SAW CUT

DAMAGED AREA EXCEEDS (2) FEET PERPENDICULAR DISTANCE ON ONE SIDE OF EXISTING TRANSVERSE JOINT

@ JOINT DETAIL

DEFORMED DETAIL

SMOOTH DETAIL

FULL-DEPTH SAW CUT

6' MIN

SEE TABLE

REMOVE & REPLACE

6'-0" MIN

DEFORMED DETAIL

EXISTING LONGITUDINAL JOINT

EXISTING JOINT TRANSVERSE

EXISTING SHOULDER

DAMAGED AREA EXCEEDS (2) FEET PERPENDICULAR DISTANCE ON BOTH SIDES OF EXISTING TRANSVERSE JOINT

(SINGLE LANE)

DEFORMED DETAIL

DOWEL DETAIL

SMOOTH DETAIL

SEE

REMOVE & REPLACE

DEFORMED DETAIL

EXISTING LONGITUDINAL JOINT

EXISTING JOINT TRANSVERSE

EXISTING SHOULDER

DAMAGED AREA EXCEEDS (2) FEET PERPENDICULAR DISTANCE ON BOTH SIDES OF EXISTING TRANSVERSE JOINT

(MULTIPLE LANE)

GENERAL NOTES AND DETAIL DRAWINGS

SEE SHEET 3 OF 3

DAMAGED AREA EXCEEDS (2) FEET PERPENDICULAR DISTANCE ON BOTH SIDES OF EXISTING TRANSVERSE JOINT

TABLE:

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>MINIMUM DAMAGE LENGTH</th>
<th>MAXIMUM DAMAGE LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>12"</td>
<td>15 FT</td>
<td>20 FT</td>
</tr>
<tr>
<td>16"</td>
<td>6 FT</td>
<td>6 FT</td>
</tr>
<tr>
<td>11"</td>
<td>15 FT</td>
<td>16 FT</td>
</tr>
</tbody>
</table>
1. The removal of the existing concrete pavement shall be cut in accordance with the existing steel reinforcement and in a manner that will leave the concrete surface in place for the repair work to be performed. The concrete surface shall be left in place until the repair work is completed.

2. The removed concrete shall be stockpiled and removed from the site in accordance with the applicable regulations of the local authorities.

3. The concrete repair shall be performed in accordance with the approved plans and specifications.

4. The concrete repair shall be designed to provide a long-term solution to the problem.

5. The concrete repair shall be performed by qualified contractors who have the necessary experience and equipment.

6. The concrete repair shall be inspected by the engineer in charge of the project.

7. The concrete repair shall be completed within the time frame specified in the contract.

8. The concrete repair shall be guaranteed for a period of five years from the date of completion.

9. The concrete repair shall be supported by a detailed report of the work performed.

NOT TO SCALE
GENERAL NOTES

MATERIALS - JOINT SEAL...

EQUIPMENT - JOINT SEAL...

PROCEDURE - JOINT SEAL...

REFERENCES - JOINT SEAL...

DESIGN TO...

NOT TO SCALE

THE QUANTITY OF JOINT SEALANT REQUIRED MAY VARY FROM THE AMOUNT DETAILED IN THE SPECIFICATIONS.

COLD POURED JOINT SEALANT SHALL BE TOOLED IMMEDIATELY AFTER APPLICATION.

JOINT SEALANT MATERIALS...
1. Spall shall be removed to a depth of 1/2" minimum and bedded with a 6mil HDPE membrane. Spalled area must be well bedded and filled with the joint sealant.

2. Reworked sheets shall be noted on the shop description, removed water proof membrane & set up sealant to sheet description, removed water proof membrane & set up sealant to sheet description.
1. BOND-breaker: A 1/2" THICK GALVANIZED STEEL PLATE 4" NON-PERFORATED UNDERDRAIN PIPE 4-" PERFORATED UNDERDRAIN PIPE

3. PAVEMENT RETAINING LUG SHALL BE POURED IN ONE OPERATION.

4. FOR DETAILS OF SLOPE PAVED OUTLET SEE SPECIAL DRAWING SUO-605-AB.

GENERAL NOTES

REQUIRE BOND BREAKER.

RETAINING LUG SHALL BE PAID UNDER ITEM NUMBERS 424-B/429-B, BITUMINOUS CONCRETE FILTER MATERIAL COMPACTED AS DIRECTED BY THE ENGINEER (SEE ELEVATION TAMPED TRENCH BOTTOM)

NOTE: UNDERDRAIN PIPE MUST BE PROTECTED AND SECURED IN ACCORDANCE WITH THE ENGINEER'S SPECIFICATIONS.

TOTALS OF ALL SHEET MATERIALS SHOWN ARE FOR THE TURN IN THE CONSTRUCTION.

FOR NEW CONCRETE PAVEMENT

BY J.F.T.

ADDED TO CADD ON 05-05-99

NOT TO SCALE

ALABAMA DEPARTMENT OF TRANSPORTATION

CURRENT ALABAMA DEPARTMENT OF TRANSPORTATION SPECIFICATIONS--
INSTRUMENT SUPPORT BASE
LONGITUDINAL JOINT
MOBILE ARM
INSTRUMENT SUPPORT BASE
HOLE BEING GROUTED
DIAL INDICATOR
DIAL INDICATOR
DIAL INDICATOR
EDGE OF PAVEMENT
SHOULDER
INSTRUMENT SUPPORT BASE
TRANSVERSE CONTRACTION JOINTS
ON THE ADJACENT SHOULDER TO THE SLAB BEING GROUTED.

GENERAL NOTES
1. THE ILLUSTRATIONS SHOWN ON THIS SHEET ARE FOR GUIDANCE ONLY AND PROVIDE THE MEASUREMENTS OF SLAB MOVEMENT WHICH ARE SUBJECT TO THE QUALITY AND ACCURACY OF THE MEASUREMENTS AND ARE MEANT TO BE GUIDELINES FOR THE CONTRACTOR TO DETERMINE THE ALIGNMENT OF ADJACENT SHOULDER.

2. MEASURING FOR MOVEMENT SHALL BE DONE USING DIAL INDICATORS AT THE FOLLOWING LOCATIONS:

- WITHIN 3 FT RADIUS OF, AND ON THE SAME SLAB AS, THE HOLE BEING GROUTED.
- ON AN ADJUSTMENT SLAB WHEN THAT SLAB IS WITHIN 5 FT OF THE HOLE BEING GROUTED.

CONCRETE GROUTING OPERATIONS
PAVEMENT MOVEMENT DURING PRESSURE
GUIDE FOR GAUGING CONCRETE

ADDED TO CADD ON 05-05-99

BY J.F.T.
GENERAL NOTES

1. SCORING BY CUTTING SHALL BE CONSTRUCTED ON RURAL FREEWAY AND OTHER SPECIFIED HIGH SPEED RURAL FACILITIES WHEN CALLED FOR IN THE PLANS.

2. SCORING BY CUTTING ARE TO BE CONSTRUCTED IN ACCORDANCE WITH SECTION 428 OF THE SPECIFICATIONS ON BOTH SHOULDERS OF REQUIRE, UNLESS OTHERWISE DESIGNATED ON THE PLANS.

3. SCORING BY CUTTING SHALL BE PAID FOR UNDER THE CONTRACT UNIT PRICE FOR SCORING EXISTING OR CONCRETE PAVEMENT SURFACE BY CUTTING PER YARD.

4. OTHER METHODS AND TYPES OF APPLICATIONS FOR HIGHWAY SHOULDERS MAY BE USED, UNLESS APPROVED IN WRITING BY THE ACRE CONSTRUCTION ENGINEER. PAYMENT WILL BE BY ITEM 428.

5. AT NARROW BRIDGES OR OTHER USEFUL PAVEMENT ENHANCEMENTS, SCORING OPERATIONS TO CONTINUE UNTIL THE WIDTH FROM THE EDGE OF TRAVELWAY TO THE ENHANCEMENT IS LESS THAN 6 FEET.

6. SCORING SHOULD BE LOCATED AT 10' IN LENGTH WITH 10' BREAKS ON THE OUTSIDE SHOULDER AND CONTINUOUS ON THE INSIDE SHOULDER OF CURVED FREEWAYS.

7. SCORING SHOULD BE CONTINUOUS ON ALL DEI SHOULDER FACILITIES.

8. SCORING SHOULD ONLY BE INSTALLED IF IT IS AT LEAST 1520' (1/4 MILE) CONTINUOUS SEGMENT, EXCLUSIVE OF DEIWAY AND INTERSECTION BREAKS.

7" (± 1/2")

1/2" MIN, 3/4" MAX

SECTION "DO" LONGITUDINAL CUT

NOT TO SCALE