<table>
<thead>
<tr>
<th>BEST MANAGEMENT PRACTICE (BMP)</th>
<th>SPECIAL DRAWING NUMBER</th>
<th>PLAN SYMBOL</th>
<th>MATERIAL REQUIREMENT REFERENCES</th>
<th>CONSTRUCTION REQUIREMENT REFERENCES</th>
<th>USAGE GUIDELINES</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMPORARY SLOPE EROSION PIPE WITH SUMP EXCAVATION</td>
<td>665.02</td>
<td>![Plan Symbol]</td>
<td>665.03, 665.04, 665.05, 665.06</td>
<td>A temporary slope erosion pipe with sump excavation is constructed with a pipe extending from the top of a cut or fill slope into an excavated segment. A sump excavation may be used to collect sediment particles before they reach the water body. This structure is to be constructed as a part of the slope without causing erosion on the face.</td>
<td></td>
</tr>
<tr>
<td>TEMPORARY SLOPE EROSION PIPE</td>
<td>665.03</td>
<td>![Plan Symbol]</td>
<td>665.03, 665.04, 665.05, 665.06</td>
<td>A temporary slope erosion pipe is constructed along a slope and below the water body. The temporary slope erosion pipe is to be constructed without causing erosion on the face.</td>
<td></td>
</tr>
<tr>
<td>Silt Fence Sediment Barrier</td>
<td>665.04</td>
<td>![Plan Symbol]</td>
<td>665.03, 665.04, 665.05, 665.06</td>
<td>A silt fence sediment barrier consists of a flexible plastic fence that is anchored into the embankment. The purpose of the silt fence sediment barrier is to control sediment while effectively as well as reduce runoff velocities of sheet flow and reducing piping flows.</td>
<td></td>
</tr>
<tr>
<td>Sediment Retention Barriers</td>
<td>665.05</td>
<td>![Plan Symbol]</td>
<td>665.03, 665.04, 665.05, 665.06</td>
<td>Sediment retention barriers are used as a sediment barrier on hard surfaces. These barriers control off-clearing and grubbing. Brush barriers control runoff velocity and thus reduce erosion.</td>
<td></td>
</tr>
<tr>
<td>Silt Check Structures</td>
<td>665.06</td>
<td>![Plan Symbol]</td>
<td>665.03, 665.04, 665.05, 665.06</td>
<td>Silt check structures are used to intercept low runoff velocities and to reduce erosion. Silt check structures used for velocity reduction and control of sediment transport under low to medium flow conditions.</td>
<td></td>
</tr>
<tr>
<td>Silt Check</td>
<td>665.07</td>
<td>![Plan Symbol]</td>
<td>665.03, 665.04, 665.05, 665.06</td>
<td>Silt check structures are used for velocity reduction and control of sediment transport under low to medium flow conditions.</td>
<td></td>
</tr>
<tr>
<td>Silt Check</td>
<td>665.08</td>
<td>![Plan Symbol]</td>
<td>665.03, 665.04, 665.05, 665.06</td>
<td>Silt check structures are used for velocity reduction and control of sediment transport under low to medium flow conditions.</td>
<td></td>
</tr>
<tr>
<td>Rock Check</td>
<td>665.09</td>
<td>![Plan Symbol]</td>
<td>665.03, 665.04, 665.05, 665.06</td>
<td>Rock check structures are used for velocity reduction and control of sediment transport under low to medium flow conditions.</td>
<td></td>
</tr>
</tbody>
</table>
| Rock Check with Sump Excavation | 665.10 | ![Plan Symbol] | 665.03, 665.04, 665.05, 665.06 | Rock check structures are used for velocity reduction and control of sediment transport under low to medium flow conditions.
<table>
<thead>
<tr>
<th>BEST MANAGEMENT PRACTICE (BMP)</th>
<th>SHEET NUMBER</th>
<th>PLAN SYMBOL</th>
<th>MATERIAL REQUIREMENT</th>
<th>CONSTRUCTION REQUIREMENTS</th>
<th>USAGE GUIDELINES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erosion Control Products</td>
<td>ESC-100</td>
<td></td>
<td>665.02, 665.03, 665.04</td>
<td>665.03, 665.04</td>
<td>Special Drawing No. from EROSION CONTROL PRODUCTS *** Note on 10-20-14 by J.F.T. LITERATURE USAGE GUIDELINES</td>
</tr>
<tr>
<td>Sediment Retention Barrier</td>
<td>ESC-200</td>
<td></td>
<td>665.02, 665.03, 665.04</td>
<td>665.03, 665.04</td>
<td>Updated Chart on 08-23-11 by J.F.T. LITERATURE USAGE GUIDELINES</td>
</tr>
<tr>
<td>Aggregate Sediment Retention</td>
<td>ESC-300</td>
<td></td>
<td>665.02, 665.03, 665.04</td>
<td>665.03, 665.04</td>
<td>Updated Chart line positioning on 10-20-14 by J.F.T. LITERATURE USAGE GUIDELINES</td>
</tr>
<tr>
<td>Applicable Inlet Protection</td>
<td>ESC-400-1</td>
<td></td>
<td>665.02, 665.03, 665.04</td>
<td>665.03, 665.04</td>
<td>Applicable Inlet Protection symbol is shown on the plans. LITERATURE USAGE GUIDELINES</td>
</tr>
<tr>
<td>Water Level Ditch Check</td>
<td>ESC-501</td>
<td></td>
<td>665.02, 665.03, 665.04</td>
<td>665.03, 665.04</td>
<td>Applicable Inlet Protection symbol is shown on the plans. LITERATURE USAGE GUIDELINES</td>
</tr>
<tr>
<td>Floating Basin Boom</td>
<td>ESC-502</td>
<td></td>
<td>665.02, 665.03, 665.04</td>
<td>665.03, 665.04</td>
<td>Applicable Inlet Protection symbol is shown on the plans. LITERATURE USAGE GUIDELINES</td>
</tr>
<tr>
<td>Temporary Stream Crossing</td>
<td>ESC-503</td>
<td></td>
<td>665.02, 665.03, 665.04</td>
<td>665.03, 665.04</td>
<td>Applicable Inlet Protection symbol is shown on the plans. LITERATURE USAGE GUIDELINES</td>
</tr>
<tr>
<td>Temporary Dewatering Structure</td>
<td>ESC-504</td>
<td></td>
<td>665.02, 665.03, 665.04</td>
<td>665.03, 665.04</td>
<td>Applicable Inlet Protection symbol is shown on the plans. LITERATURE USAGE GUIDELINES</td>
</tr>
</tbody>
</table>

NOT TO SCALE
1. Temporary slope drains, berms, and rock, if necessary, shall be used as the embankment is constructed. Maximum spacing of the drain assemblies shall be 75 feet, or as determined by the Engineer. The drain assemblies shall be used until the slopes are protected with permanent soil erosion control measures.

2. Temporary berms shall also be constructed at the top of all embankment slopes designated or permitted by the Engineer. The gradient of the berms shall be the minimum possible that conditions permit.

3. In some cases, it may be necessary to embed metal or plastic pipe into the fill slope to ensure proper anchorage.

4. The Contractor shall select the size of slope drain pipe.

NOTES:

- The Contractor may propose alternate anchoring detail. Engineers approval will be based on performance.

- Recommended anchor detail.

- Drain pipe flow into end section drainage and direct flow into end section bore.

- Temporary pipe end treatment.

- Plan at low point.

- Recommended anchor detail.

- Not to scale.
SEDIMENT BARRIER AT CROSS DRAIN

SILT FENCE AT TOE OF FILL

SIDE ELEVATION

REAR ELEVATION

TEMPORARY BRUSH BARRIER

Notation:
1. Brush barriers may be used where natural ground is level or sloping away from project.
2. Place brush, log and tree limbs approximately parallel to toe of fall slope with some of the material positioned facing downstream. The brush is positioned at locations shown on plans or as directed or permitted by the engineer.
3. The brush to be kept through brush barriers, intermingle the brush, log, and tree limbs so as not to form a solid dam.
4. The brush barrier shall be covered with filter fabric.

APPLICATIONS

1. The elevation at the bottom of the brush barrier at some point along the toe of the fill will vary.
2. The elevation at the bottom of the brush barrier at the point along the toe of the fill will vary.
3. The elevation at the bottom of the brush barrier at the point along the toe of the fill will vary.
4. The elevation at the bottom of the brush barrier at the point along the toe of the fill will vary.

NOTES:

- The elevation at the bottom of the brush barrier at some point along the toe of the fill will vary.
- The elevation at the bottom of the brush barrier at the point along the toe of the fill will vary.
- The elevation at the bottom of the brush barrier at the point along the toe of the fill will vary.
- The elevation at the bottom of the brush barrier at the point along the toe of the fill will vary.
Details of Silt Fence Installation

1. Method II Fence Installation also to include anchors and tiebacks as required.
2. Silt fence shall be used in areas where flow is low to moderate or as determined by the engineer.
3. Silt fences are temporary sediment control items that shall be erected down slope of erodible areas such as newly graded fill slopes and adjacent to streams and channels.
4. Silt fence should be placed well inside right-of-way and along edge of clearing limits. This will allow room for additional best management practices such as vegetated buffers.
5. Wherever possible silt fences shall be constructed across a level area in the shape of a smile. This aids in prevention of runoffs and facilitates sediment.
6. The contractor may elect to use either installation method I or method II.
7. Method II installation shall be acceptable using an item that is manufactured for the application and pre-drilled and pre-assembled for the 2" X 6" posts.
8. See ALDOT list III-3 for approved silt fence geotextiles.

Notes:
- Preferred installation method is Method II.
- Anchors and tiebacks are required for Method II installation.
- Silt fences shall be placed to prevent overtopping.
- Silt fences shall be used to control sedimentation.
- Silt fences shall be placed to allow for additional Best Management Practices such as vegetated buffers.

Below is a diagram illustrating the installation of silt fences:

- **Legend:**
 - Threaded metal and studed metal are functionally equal.
 - Top of post on right is approx. 1'-0" overlap, and the post will be covered with soil.
 - Bury woven wire fence overlap at post.
 - Stop geotextile here.
 - Anchors at each end of fence as required.

- **Details:**
 - Silt fence shall be placed well inside right-of-way and along edge of clearing limits.
 - The contractor may elect to use either installation method I or method II.
 - Method II installation shall be acceptable using an item that is manufactured for the application and pre-drilled and pre-assembled for the 2" X 6" posts.
 - See ALDOT list III-3 for approved silt fence geotextiles.

[Diagram showing installation details, including elevation, plan, and side views]
NOTES:

1. THE DITCH CHECK PERSPECTIVE ILLUSTRATES A TOOL BOX OF TEMPORARY PRACTICES THAT MAY BE DIRECTED OR PERMITTED BY THE ENGINEER. DITCH CHECKS ARE PLACED TO CONTROL MUDFLOWS AND TO PREVENT FOR TRAPPING OF SEDIMENTS.

2. SELECTION OF THE APPROPRIATE DITCH CHECK SHOULD BE A FUNCTION OF CONSTRUCTION PHASE, SLOPE, ELEVATION, LAND USE, ETC., AND SAFETY.

3. DITCH CHECKS CAN BE REMOVED FOR MAINTENANCE AND/or RETRIEVAL BUT MUST REMAIN IN PLACE UNTIL SUBURBAN AREAS ARE PERMANENTLY STABILIZED. MAINTENANCE CHECKS REMOVE OF SEDIMENT RECOMMENDED WHERE DENSITY ACOETICALLY REACHES 1/3 THE CARRYING CAPACITY OR REACHES 1/2 THE CARRYING CAPACITY OF THE STRUCTURE AND NEVER ALLOWING FOR SEDIMENT TO ACCELERATE MORE THAN 1/2 THE RAMP OR RAMP OF THE DITCH CHECK STRUCTURE.

4. HIBBLE CHECKS ARE USED TO INTERCEPT LOW VOLUME FLOWS IN LOW TO MODERATE GRADIENT DITCHES.

5. SAND BAG DITCH CHECKS ARE USED FOR GEOMETRY REGULATION AND MULTIPLE SEDIMENT TRAPPING IN CONCRETE PAVED DITCHES OR IN DITCHES THAT HAVE ROCKY BONDS.

6. WATTLE DITCH CHECKS ARE APPROPRIATE FOR GEOMETRY REGULATION AND CONTROL OF SEDIMENT TRANSPORT UNDER LOW TO MEDIUM FLOW CONDITIONS NOT EXCEEDING 1.0 CFIT/SEC.

7. SILT FENCE CAN BE USED IN DITCHES WITH CONCENTRATED FLOWS WITHIN THE CLEAR ZONE WHERE MUDFLOW CAN BE DIRECTED AS CONSTRUCTION PROCTOR.

8. THE TYPE AND SIZE OF ROCKUSED TO CONSTRUCT ROCK DITCH CHECKS WILL BE SELECTED BY THE DESIGNER AND SHOWN ON THE PLAN. THE SIZE OF ROCK CHECKS DEPENDS ON THE FIELD PLANS AND VOLUMES. SEDIMENT TRAPPING EFFICIENCY MAY BE ADJUSTED BY CHAINAGE.

9. ROCK DITCH CHECKS WITH SEDIMENT EXCAVATION CAN BE PLACED IN DITCHES TO FACILITATE ON-SITE SEDIMENT TRAPPING. Ditch check with silt check with SEDIMENT EXCAVATION IS USED WHEN DITCHES IS USED IN DITCHES TO EXPOSEWALL OF DITCHES. Ditch check with SEDIMENT EXCAVATION IS USED WHEN DITCHES IS USED IN DITCHES TO EXPOSEWALL OF DITCHES. Ditch check with SEDIMENT EXCAVATION IS USED WHEN DITCHES IS USED IN DITCHES TO EXPOSEWALL OF DITCHES. Ditch check with SEDIMENT EXCAVATION IS USED WHEN DITCHES IS USED IN DITCHES TO EXPOSEWALL OF DITCHES. Ditch check with SEDIMENT EXCAVATION IS USED WHEN DITCHES IS USED IN DITCHES TO EXPOSEWALL OF DITCHES. Ditch check with SEDIMENT EXCAVATION IS USED WHEN DITCHES IS USED IN DITCHES TO EXPOSEWALL OF DITCHES. Ditch check with SEDIMENT EXCAVATION IS USED WHEN DITCHES IS USED IN DITCHES TO EXPOSEWALL OF DITCHES. Ditch check with SEDIMENT EXCAVATION IS USED WHEN DITCHES IS USED IN DITCHES TO EXPOSEWALL OF DITCHES. Ditch check with SEDIMENT EXCAVATION IS USED WHEN DITCHES IS USED IN DITCHES TO EXPOSEWALL OF DITCHES. Ditch check with SEDIMENT EXCAVATION IS USED WHEN DITCHES IS USED IN DITCHES TO EXPOSEWALL OF DITCHES. Ditch check with SEDIMENT EXCAVATION IS USED WHEN DITCHES IS USED IN DITCHES TO EXPOSEWALL OF DITCHES. Ditch check with SEDIMENT EXCAVATION IS USED WHEN DITCHES IS USED IN DITCHES TO EXPOSEWALL OF DITCHES IS USE
5. Soil is compacted along the base of the upstream face to prevent piping.

LOW TO MODERATE GRADIENT DITCHES.

HAY BALES ARE USED TO INTERCEPT LOW VOLUME FLOWS IN

HAY BALE DITCH CHECK SELECTION GUIDELINES

LOW TO MODERATE GRADIENT DITCHES.

HAY BALES ARE USED TO INTERCEPT LOW VOLUME FLOWS IN

HAY BALE DITCH CHECK SELECTION GUIDELINES

LOW TO MODERATE GRADIENT DITCHES.

HAY BALES ARE USED TO INTERCEPT LOW VOLUME FLOWS IN

HAY BALE DITCH CHECK SELECTION GUIDELINES

LOW TO MODERATE GRADIENT DITCHES.

HAY BALES ARE USED TO INTERCEPT LOW VOLUME FLOWS IN

HAY BALE DITCH CHECK SELECTION GUIDELINES

LOW TO MODERATE GRADIENT DITCHES.

HAY BALES ARE USED TO INTERCEPT LOW VOLUME FLOWS IN

HAY BALE DITCH CHECK SELECTION GUIDELINES

LOW TO MODERATE GRADIENT DITCHES.

HAY BALES ARE USED TO INTERCEPT LOW VOLUME FLOWS IN

HAY BALE DITCH CHECK SELECTION GUIDELINES

LOW TO MODERATE GRADIENT DITCHES.

HAY BALES ARE USED TO INTERCEPT LOW VOLUME FLOWS IN

HAY BALE DITCH CHECK SELECTION GUIDELINES

LOW TO MODERATE GRADIENT DITCHES.
SAND BAG DITCH CHECK SELECTION GUIDELINES

NOTES:
1. MINIMUM RECOMMENDED PLACEMENT INTERVAL BETWEEN SAND BAG DITCH CHECK IS 100' UNLESS SHOWN OTHERWISE ON THE PLANS OR APPROVED BY THE ENGINEER. SEE SPACING GUIDANCE ON SHEET ESC-300-1.
2. PREVENTING SEDIMENT FROM ENTERING A PAVED DITCH IS PREFERABLE TO CAPTURING SEDIMENT WITHIN PAVED DITCH.

SIDE VIEW
(IN DITCH BOTTOM)

SAND BAG DITCH CHECK

REINFORCEMENT SHALL SPAN THE ENTIRE DITCH BOTTOM.

CONCRETE DITCH

NOTE:
ENDPOINT A MUST BE HIGHER THAN FLOWLINE POINT B.

FLOW

DITCH BOTTOM

DITCH CHECK DETAILS OF SANDBAG

D.J.W.
J.F.T.
07-02-14
66514

SANDBAG DITCH CHECK

ESC-300-3

on 10-31-16 by J.F.T. and J.M.M.
ESC-300 (SHEET 3 OF 8) to ESC-300-3

1. Updated Special Drawing No. from Description Box on 10-20-14 by J.F.T.
2. Added to CADD on 07-02-14 by J.F.T.

ADDENDUM TO ALABAMA DEPARTMENT OF TRANSPORTATION SPECIAL DRAWING

NOT TO SCALE

NOTES: UNAUTHORIZED USE OF THIS DRAWING MAY BE PROSECUTED TO THE FULLEST EXTENT OF THE LAW.

NOT TO SCALE
DETAIL (DITCH CHECK)

ELEVATION DETAIL

NOTES:
1. Minimum recommended placement interval between wattle ditch check is 100 feet unless shown otherwise on the plans or approved by the Engineer. See spacing guidance on ESC-300-1.
2. Anchoring staples shall be sized, spaced, driven and be of a material that effectively secures the check. Stake spacing shall be a maximum of two feet.
3. Stakes should not be used in hard bottom channels.
4. Staples spaced 18 inches apart, along the channel edges and down the center of the channel. Staples spaced 10 inches apart across the upstream and downstream edges.

WATTLE DITCH CHECK SELECTION GUIDELINES

- BATTLE DITCH CHECKS ARE APPROPRIATE FOR VELOCITY REDUCTION AND CONTROL OF SEDIMENT TRANSPORT UNDER LOW TO MEDIUM FLOW CONDITIONS NOT EXCEEDING 1.0 CU FT/SEC.
SILT DIKE DITCH CHECK SELECTION GUIDELINES

SILT DIKES CAN BE USED IN DITCHES WITH CONCENTRATED FLOWS WITHIN THE CLEAR ZONE WHERE RIPRAP CAN NOT BE USED.

1. Minimum recommended placement interval between silt dike ditch check is 100 feet unless shown otherwise on the plans or approved by the engineer. See spacing guidance on ESC-300-1.
2. Installation shall be in accordance with manufacturers recommendations.

SECTION A-A

NOTE:
1. Point A must be higher than point B to ensure that water flows over the dike and not around the ends.

SECTION B-B

NOTICE: Staples shall be placed where the units overlap and in the center of the unit.

SILT DIKE INSTALLATION FOR ROADWAY DITCHES

NOT TO SCALE
ROCK DITCH CHECK SELECTION GUIDELINES

1. Minimum spacing for rock ditch checks shall be 50 feet or as directed by the engineer.
2. Rock ditch checks shall be choked with filter fabric.
3. See list II-3 for approved geotextiles.

NOTES:

1. Minimum spacing for rock ditch checks shall be 50 feet or as directed by the engineer.
2. Rock ditch checks shall be choked with filter fabric.
3. See list II-3 for approved geotextiles.
ROCK DITCH CHECK WITH SUMP EXCAVATION SELECTION GUIDELINES

The type and size of rock used to construct the check will be selected by the designer and shown on the plans. The size of rock chosen will be proportional to expected flows and velocities.

GEOTEXTILE FABRIC UNDERLAYMENT

ROCK DITCH CHECK PLACED UNDER ENTIRE WIDTH OF ROCK

FLOW LINE OF DITCH CENTERLINE

WET STORAGE ELEVATION

INDEX NO

Bureau Std Engr:

DATE DRAWN:

2006

R:B

ideo:

INDEX NO

SPECIAL DRAWING NO

Geotextile) on both sides in "PROFILE DETAIL OF PLAN VIEW" and extension of fabric VIEW" to show Geotextile Fabric in "REVISIONS"

1. DESIGN BUREAU SPECIAL DRAWING on 10-11-12 by J.F.T.

2. ROCK DITCH CHECK REQUIRED FOR VELOCITY REDUCTION PER ESC-300-6

3. ROCK DITCH CHECK REQUIRED FOR VELOCITY REDUCTION

4. ROCK DITCH CHECK WITH SUMP EXCAVATION

WITH SUMP EXCAVATION

ALABAMA DEPARTMENT OF TRANSPORTATION
1. Silt fence shall be used in areas where flow is moderate to high or as directed by the Engineer.

2. Silt fences are temporary erosion control items that shall be erected down grade of erodible areas such as newly graded fill slopes and adjacent to streams and channels.

3. If the top of the geotextile at point B is higher than the bottom of the fence at point A then no weir is required.

4. See ALDOT List II-3 for approved silt fence geotextiles.
DITCH INLET CONSTRUCTION STAGES

STAGE 1
INLET/JUNCTION BOX LOCATION EXCAVATED

STAGE 2
INLET/JUNCTION BOX CONSTRUCTED BUT NOT BACKFILLED

STAGE 3
INLET CONSTRUCTED AND BACKFILLED

STAGE 4
INLET CONSTRUCTED AND BACKFILLED

NOTES:
1. Foundation backfill should be placed in STAGE 1 immediately after pipe installation. Inlet construction should commence as soon as possible and be continuous through completion.
2. Configurations may be adjusted with approval of the designer and field supervisors. Water flow, soil, or installation challenges.
3. During STAGE 1 and STAGE 2, soil slope may be required on the side of the inlet excavation as dictated by the engineer.
4. If dual fencing is installed around the inlet excavation, it should be placed in a configuration that will allow inlet construction.
5. For curb inlet protection, see Special Drawing No. ESC-300-1, Special Drawing No. ESC-300-2, and Special Drawing No. ESC-300-3.
6. Inlet inlet box (if any) approved for manufactured inlet protection devices.

INDEX NO
INDEX NO

SPECIAL DRAWING NO
SPECIAL DRAWING NO

TYPICAL APPLICATIONS AND DETAILS

INLET PROTECTION

WILL ALLOW INLET CONSTRUCTION.
ON GRADES & SAGS
DETAILS FOR COARSE AGGREGATE
INLET PROTECTION

1. Revised Note No 2 on 08-06-14 by J.F.T.
2. Changed PLAN - ON GRADE to PLAN VIEW.
3. Updated Special Drawing No. from ESC-400 to ESC-400-2 on 10-31-16 by J.F.T. & J.M.M.

NOTES:
1. The elevation of the top of the required stone block shall be lower than the top of the ditch.
2. This coarse aggregate inlet protection may only be utilized during Stage 3 and Stage 4 inlet construction. See Special Drawing No ESC-400-1 for inlet protection typical applications and details.
3. Install loose concrete blocks upright in a staggered configuration for first and second layers, with the exception of the downstream block.
4. The downstream blocks shall be constructed by overturning concrete blocks. Place intermediate flow between geotextile and the downstream block so that both holes are covered. Remove 3" rectangular section of geotextile fabric from lower block position to allow downstream stones to lay.

PLAN VIEW

SECTION A-A

GEOTEXTILE FABRIC

ALL GEOTEXTILE FABRIC UNDERLAYMENT SHALL BE PINNED TO COVER CONCRETE BLOCKS.

NOT TO SCALE

ALABAMA DEPARTMENT OF TRANSPORTATION
DESIGN BUREAU SPECIAL DRAWING
1409 COLISEUM BOULEVARD
MONTGOMERY, AL 36130-3050
CURB INLET PROTECTION (STAGE 2)
SINGLE OR DOUBLE WING INLET

NOTES:
1. ANCHORING STAKES SHALL BE SPACED, SPACED, AND KEEP A MATERIAL THAT
 EFFECTIVELY SECURES THE WATTLE. STAKE SPACING SHALL BE A MINIMUM OF 12 FEET
2. OVERLAP ENDS OF WATTLES PER MANUFACTURER'S RECOMMENDATIONS (1' MIN, 3'MAX).
3. SEE ALDOT LIST II-24 FOR APPROVED WATTLES.
4. SILT FENCE OR SAND BAGS MAY ALSO BE USED FOR THIS APPLICATION. HAY BALES NOT
 ACCEPTABLE DURING THIS STAGE.

SECTION B-B

SECTION A-A

PLAN VIEW

DROP INLET PROTECTION

DROPPED INLET PROTECTION DETAILS

FLOW

GUTTER FLOW SHALL BE INLET PROTECTION FOR

STAKE (SEE INLET DETAILS)

BOTTOM CHANNEL

20" WATTLE

STAKE

20" WATTLE

SECTION B-B

20' - 0''

MIN

OFT WATTLES

INLET PROTECTION DETAILS

TEMPORARY DRAIN
1. The top of the required geotextile fabric shall be 6" lower than the shoulder elevation in any area critically susceptible to flooding.
2. De-watering holes shall be 1" x 1" in diameter and spaced 2'-0" apart to allow for de-watering in no more than 48 hours.
3. Fasten de-watering device to the 3x4 side brace.
4. Staple geotextile fabric to de-watering device and cut cross slits in the filter fabric at the hike location to allow water to flow through.
5. Inlet protection device shall be paid as inlet protection stage 3 or 4.
6. Inlet protection shall not be utilized during phase 1 and stage 2 inlet construction. See special drawing no. DEC-400-4 for inlet protection typical applications and details.

The bottom of the fabric shall be cut at each corner post and pinned 5" O.C. to the underlayment.

Excess geotextile fabric and wire mesh shall be folded over and stapled to 2x4 side braces.

Excess geotextile fabric and wire mesh shall be folded over and stapled to 2x4 side braces.

Geotextile fabric shall be 6" lower than the shoulder in any area critically susceptible to flooding.
1. CURB INLET PROTECTION CAN ALSO BE USED AT OTHER EDGE-OF-PAVEMENT TYPE INLETS SUCH AS TYPE "E" INLETS.

2. SEE SHT ESC-400-3 FOR INLET PROTECTION WHERE INLET CONSTRUCTION HAS NOT BEEN COMPLETED.

3. IF DENUDED AREAS EXIST BEHIND THE INLET, A SEDIMENT BARRIER SHOULD BE INSTALLED (SEE SHT ESC-400-3) WILL BE MADE AS APPROPRIATE FOR ITEMS USED.

4. BAG HEIGHT AND NUMBER OF BAGS SHOULD BE BASED ON CURB HEIGHT AND USE OF TRAVELWAY.

5. SEDIMENT SHOULD BE CONTROLLED PRIOR TO ENTERING GUTTER. GUTTER CHECKS AND SURFACES AND DISPOSE OF APPROPRIATELY AWAY FROM INLETS AND/OR WATER BODIES.

6. REMOVE ACCUMULATED SEDIMENT AFTER EVERY DOWNPULSE TO PREVENT UNDERCUTTING.

7. IF REQUIRED DURING STAGE 1, A SEDIMENT BARRIER SHOULD BE INSTALLED AROUND IT'S PERIMETER TO CONTROL SEDIMENT. SEE SHT ESC-400-3.

8. PAYMENT FOR CURB INLET PROTECTION FOR WORK REQUIRED BEYOND STAGE 2 (SEE SHT ESC-400-3) WILL BE MADE AS APPROPRIATE FOR ITEMS USED.
FLOATING BASIN BOOM APPLICATIONS

TYPICAL FLOATING BASIN BOOM INSTALLATION

NOTES:

1. The contractor is responsible for selection of the appropriate type of floating basin boom and installation method based on water body conditions.

2. Floating basin booms are to be installed in accordance with manufacturer specifications.

3. Floating basin booms can be staged and/or anchored in steel or wooden pattern where designed to be installed in accordance with the basin boom installation method.

4. Floating basin booms are to be installed in accordance with manufacturers' specifications where designed to be installed in accordance with the basin boom installation method.

5. Floating basin boom installations should be made in accordance with manufacturer's specifications and/or applicable engineering standards where designed to be installed in accordance with the basin boom installation method.

6. Floating basin boom installations may be subject to proprietary designs or configurations. Where floating basin boom installations may be subject to proprietary designs or configurations, floating basin boom installations should be made in accordance with manufacturer's specifications and/or applicable engineering standards.
1. A STABILIZED CONSTRUCTION ENTRANCE SHALL BE CONSTRUCTED AT LOCATIONS SHOWN ON THE PLANS. CONSTRUCTION ENTRANCES ARE POINTS OF ENTRY FROM STABILIZED AREAS OF THE PROJECT TO PUBLIC ROADS WHERE OFFSITE TRACKING OF MUD COULD OCCUR. TRAFFIC FROM UNSTABILIZED AREAS OF THE PROJECT SHALL BE DIRECTED TO THE STABILIZED ENTRANCE. BARRIERS, FLAGGING, OR OTHER POSITIVE MEANS SHALL BE USED AS REQUIRED TO LIMIT AND DIRECT VEHICULAR EGRESS ACROSS THE STABILIZED ENTRANCE.

2. THE CONTRACTOR MAY PROPOSE AN ALTERNATIVE TECHNIQUE TO MINIMIZE OFFSITE TRACKING OF MUD. THE ALTERNATIVE MUST BE REVIEWED AND APPROVED BY THE ENGINEER PRIOR TO ITS USE. THE ALTERNATIVE MUST BE REVIEWED.

3. ALL MATERIALS SPILLED, DROPPED, OR TRACKED ONTO PUBLIC ROADS (INCLUDING THE STABILIZED CONSTRUCTION ENTRANCE) MUST BE REMOVED DAILY, OR MORE FREQUENTLY IF SO DIRECTED BY THE ENGINEER. CONSTRUCTION MUD SHALI BE REMOVED DAILY, OR MORE FREQUENTLY.

4. AGGREGATES SHALL BE ALDOT SIZE #1. SIZES CONTAINING EXCESSIVE SMALL AGGREGATE WILL TRACK OFF THE PROJECT AND ARE UNSUITABLE.

5. THE STABILIZED CONSTRUCTION ENTRANCE SHALL BE MAINTAINED IN A CONDITION THAT WILL ALLOW IT TO PERFORM ITS FUNCTION TO PREVENT OFFSITE TRACKING, AND TO MOVE ACCUMULATED MUD DOWNWARD THROUGH THE STONE. ADDITIONAL STABILIZATION OF THE STABILIZED CONSTRUCTION ENTRANCE MAY BE REQUIRED TO LIMIT THE MUD TRACKED.

6. THE STABILIZED CONSTRUCTION ENTRANCE SHALL BE RINSED WHEN NECESSARY TO LIMIT THE MUD TRACKED.

THE CONTRACTOR MAY PROPOSE AN ALTERNATIVE TECHNIQUE TO MINIMIZE OFFSITE TRACKING OF MUD. THE ALTERNATIVE MUST BE REVIEWED AND APPROVED BY THE ENGINEER PRIOR TO ITS USE. THE ALTERNATIVE MUST BE REVIEWED.
TEMPORARY DRAINING STRUCTURE (BERM AND FABRIC)

NOTES:
1. Filter fabric is typically used for temporary coffer dams, trenches, spread footings, etc.
2. The temporary coffer dam must be removed when the area is ready for fill.
3. This is not an approved fabric from the temporary coffer dam structure.
4. The use of fabric is to collect and concentrate water from temporary coffer dam structure into an approved system to be used when approved by the engineer.
5. The fabric between stream and/or drainage system and the temporary coffer dam structure.
6. Trench filter fabric into ground 10 IN.
7. The details shown are typical recommendations, but not mandatory.

TABLE:

<table>
<thead>
<tr>
<th>Type</th>
<th>Pump Discharge</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 IN</td>
<td>8,400 GPM</td>
</tr>
</tbody>
</table>

NOT TO SCALE

REFERENCES:
- Bureau Std Engr: D.J.W.
- Date Drawn: 08-23-11 by J.F.T.

ALABAMA DEPARTMENT OF TRANSPORTATION

INDEX NO
SPECIAL DRAWING NO

APPLICATION:
Temporarily dewatering structure shown by erosion and sediment control plans to be based on use of 4 inch construction pump shown in the figure above.

PRESENTATION:
- Silt fence
- Trench filter fabric
- Polyethylene sheeting or filter fabric
- Compacted backfill
- Rip-rap (Class 2)
- Existing groundline
- Natural groundline
- Variable (W)

DESIGN BUREAU SPECIAL DRAWING

REFERENCES:
- Bureau Std Engr: D.J.W.
- Date Drawn: 08-23-11 by J.F.T.

APPLICATION:
Temporarily dewatering structure shown by erosion and sediment control plans to be based on use of 4 inch construction pump shown in the figure above.

PRESENTATION:
- Silt fence
- Trench filter fabric
- Polyethylene sheeting or filter fabric
- Compacted backfill
- Rip-rap (Class 2)
- Existing groundline
- Natural groundline
- Variable (W)

DESIGN BUREAU SPECIAL DRAWING

REFERENCES:
- Bureau Std Engr: D.J.W.
- Date Drawn: 08-23-11 by J.F.T.

APPLICATION:
Temporarily dewatering structure shown by erosion and sediment control plans to be based on use of 4 inch construction pump shown in the figure above.

PRESENTATION:
- Silt fence
- Trench filter fabric
- Polyethylene sheeting or filter fabric
- Compacted backfill
- Rip-rap (Class 2)
- Existing groundline
- Natural groundline
- Variable (W)

DESIGN BUREAU SPECIAL DRAWING

REFERENCES:
- Bureau Std Engr: D.J.W.
- Date Drawn: 08-23-11 by J.F.T.

APPLICATION:
Temporarily dewatering structure shown by erosion and sediment control plans to be based on use of 4 inch construction pump shown in the figure above.

PRESENTATION:
- Silt fence
- Trench filter fabric
- Polyethylene sheeting or filter fabric
- Compacted backfill
- Rip-rap (Class 2)
- Existing groundline
- Natural groundline
- Variable (W)

DESIGN BUREAU SPECIAL DRAWING

REFERENCES:
- Bureau Std Engr: D.J.W.
- Date Drawn: 08-23-11 by J.F.T.

APPLICATION:
Temporarily dewatering structure shown by erosion and sediment control plans to be based on use of 4 inch construction pump shown in the figure above.

PRESENTATION:
- Silt fence
- Trench filter fabric
- Polyethylene sheeting or filter fabric
- Compacted backfill
- Rip-rap (Class 2)
- Existing groundline
- Natural groundline
- Variable (W)

DESIGN BUREAU SPECIAL DRAWING

REFERENCES:
- Bureau Std Engr: D.J.W.
- Date Drawn: 08-23-11 by J.F.T.

APPLICATION:
Temporarily dewatering structure shown by erosion and sediment control plans to be based on use of 4 inch construction pump shown in the figure above.

PRESENTATION:
- Silt fence
- Trench filter fabric
- Polyethylene sheeting or filter fabric
- Compacted backfill
- Rip-rap (Class 2)
- Existing groundline
- Natural groundline
- Variable (W)
1. Temporary culvert stream crossings provide a means for vehicles and equipment to safely cross a watercourse while minimizing damage to the channel and/or banks.

2. Permanent culvert stream crossings, the types of which are depicted shall be constructed to safely pass expected peak flow of the stream for the type of year and length of time that they are expected.

3. Temporary stream crossings shall be designed to provide structural integrity and stability and maintain normal downstream flows. The use of permanent crossing and permanent aggregate fill shall be withheld to the extent practicable.

4. A continuous program of effective erosion and sediment control measures shall be developed prior to and conditional upon any type of construction activity within the banks of a stream and a crossing is no longer needed. The streamed and streamed banks shall be restored to pre-disturbance conditions, or such a condition that provides substantially equivalent protection of water quality.

5. Locations or types of temporary culvert stream crossings will not be shown on the plans as required. They will be shown for materials on construction being built to the standard specifications.

6. The contractor may propose other options for temporary stream crossings such as steel/timber bridge, ford or mats.

7. The details provided design a typical temporary culvert stream crossing. The details show the optional recommendations but not necessary. Permitting approval requirements may prohibit the use of materials or construction to be built to the standard specifications.

8. Contractor shall submit detailed stream crossing plan in accordance with Alabama Department of Transportation Specifications Section 107.23.

Notes:
- Temporary culvert stream crossings provide a means for vehicles and equipment to safely cross a watercourse while minimizing damage to the channel and/or banks.

- Permanent culvert stream crossings, the types of which are depicted shall be constructed to safely pass expected peak flow of the stream for the type of year and length of time that they are expected.

- Temporary stream crossings shall be designed to provide structural integrity and stability and maintain normal downstream flows. The use of permanent crossing and permanent aggregate fill shall be withheld to the extent practicable.

- A continuous program of effective erosion and sediment control measures shall be developed prior to and conditional upon any type of construction activity within the banks of a stream and a crossing is no longer needed. The streamed and streamed banks shall be restored to pre-disturbance conditions, or such a condition that provides substantially equivalent protection of water quality.

- Locations or types of temporary culvert stream crossings will not be shown on the plans as required. They will be shown for materials on construction being built to the standard specifications.

- The contractor may propose other options for temporary stream crossings such as steel/timber bridge, ford or mats.

- The details provided design a typical temporary culvert stream crossing. The details show the optional recommendations but not necessary. Permitting approval requirements may prohibit the use of materials or construction to be built to the standard specifications.

- Contractor shall submit detailed stream crossing plan in accordance with Alabama Department of Transportation Specifications Section 107.23.
NOT TO SCALE

INDEX NO

SPECIAL DRAWING NO

INDEX NO

A

SPECIAL DRAWING NO

WITH GEOTEXTILE FABRIC OR PLASTIC LINING

USED DURING CONSTRUCTION

TEMORARY DIVERSION CHANNEL

WITH GEOTEXTILE FABRIC OR PLASTIC LINING

TEMPORARY CULVERT

USED DURING CONSTRUCTION

NOTES:
1. TEMPORARY DIVERSION CHANNELS MAY BE USED TO DIVERT NORMAL FLOW FROM EXISTING CHANNELS UNTIL SUCH AREAS CAN BE STABILIZED.
2. CONTRACTOR SHALL DETERMINE CULVERT AND DIVERSION CHANNEL SIZES, CONSTRUCTION METHODS AND MATERIALS FOR TEMPORARY CULVERTS AND DIVERSION CHANNELS.
3. RIP-RAP WITH FILTER FABRIC MAY BE USED FOR CHANNEL FLOW VELOCITIES OF LESS THAN 3.0 FPS.
4. SOIL FILTER BAGS (SEE SP.DWG.ESC-503) MAY BE USED FOR CHANNEL FLOW VELOCITIES OF 3.0 FPS TO 9.0 FPS. THE FILTER BAGS MUST BE SHEETED WITH GEOTEXTILE FABRIC OR PLASTIC LINING
5. LOCATIONS OR TYPES OF TEMPORARY DIVERSION WILL NOT BE SHOWN ON THE PLANS AS REQUIRED. WORK WILL REQUIREMENTS FOR MATERIALS OF CONSTRUCTION BE DETERMINED BY THE ENGINEER.
6. TEMPORARY CULVERT LINING LIMITS WILL BE SHOWN ON THE PLANS AS REQUIRED. TEMPORARY CULVERT LINING LIMITS CAN BE ANY NON-ERODIBLE MATERIAL.
7. DURING CONSTRUCTION OF DIVERSION CHANNELS, DAMAGE TO THE EXISTING CHANNEL, CULVERTS, AND OTHER STRUCTURES OF THE CHANNEL CONSTRUCTION SHOULD BE MINIMIZED.
8. CONTRACTOR SHALL DETERMINE CULVERT AND DIVERSION CHANNEL SIZES, CONSTRUCTION METHODS AND MATERIALS FOR TEMPORARY CULVERTS AND DIVERSION CHANNELS.
9. TEMPORARY DIVERSION CHANNELS MAY BE USED TO DIVERT NORMAL FLOW FROM EXISTING CHANNELS UNTIL SUCH AREAS CAN BE STABILIZED.
10. THE DETAILS PROVIDE DEPTH-TOTAL TEMPORARY DIVERSION CHANNELS. THE DETAILS SHOW ARE OPTICAL RECOMMENDATIONS, BUT NOT MANDATORY.
11. THE CONTRACTOR MAY PROVIDE THE USE OF OTHER DIVERSION OPTIONS SUCH AS DITCHING, DUMPING OF DIRT CONSTRUCTION.
12. TEMPORARY FLOW DIVERSION STRUCTURES CAN BE USED UNTIL WORK IS COMPLETE. THESE STRUCTURES CAN BE ANY NON-ERODIBLE MATERIAL.
SUSPENDED PIPE DIVERSION (DOWNSTREAM)

GENERAL NOTES

1. **SUSPENDED PIPE DIVERSIONS** may be used to divert any stream or drainage tributary into the stream. All tributaries draining from lands within the project area. A suspended pipe diversion may be designed using the proposed dimensions and layout. The **SUSPENDED PIPE DIVERSIONS** are designed using a 2-year storm frequency flow rate.

2. **SUSPENDED PIPE DIVERSIONS** may be used to direct water around the project area. **SUSPENDED PIPE DIVERSIONS** are not intended to be used to divert water from the project area. **SUSPENDED PIPE DIVERSIONS** are designed using a 2-year storm frequency flow rate.

3. **SUSPENDED PIPE DIVERSIONS** may be used to divert water from the project area. **SUSPENDED PIPE DIVERSIONS** are designed using a 2-year storm frequency flow rate.

4. **SUSPENDED PIPE DIVERSIONS** may be used to divert water from the project area. **SUSPENDED PIPE DIVERSIONS** are designed using a 2-year storm frequency flow rate.

5. **SUSPENDED PIPE DIVERSIONS** may be used to divert water from the project area. **SUSPENDED PIPE DIVERSIONS** are designed using a 2-year storm frequency flow rate.

6. **SUSPENDED PIPE DIVERSIONS** may be used to divert water from the project area. **SUSPENDED PIPE DIVERSIONS** are designed using a 2-year storm frequency flow rate.

7. **SUSPENDED PIPE DIVERSIONS** may be used to divert water from the project area. **SUSPENDED PIPE DIVERSIONS** are designed using a 2-year storm frequency flow rate.

8. **SUSPENDED PIPE DIVERSIONS** may be used to divert water from the project area. **SUSPENDED PIPE DIVERSIONS** are designed using a 2-year storm frequency flow rate.

9. **SUSPENDED PIPE DIVERSIONS** may be used to divert water from the project area. **SUSPENDED PIPE DIVERSIONS** are designed using a 2-year storm frequency flow rate.

10. **SUSPENDED PIPE DIVERSIONS** may be used to divert water from the project area. **SUSPENDED PIPE DIVERSIONS** are designed using a 2-year storm frequency flow rate.

11. **SUSPENDED PIPE DIVERSIONS** may be used to divert water from the project area. **SUSPENDED PIPE DIVERSIONS** are designed using a 2-year storm frequency flow rate.

12. **SUSPENDED PIPE DIVERSIONS** may be used to divert water from the project area. **SUSPENDED PIPE DIVERSIONS** are designed using a 2-year storm frequency flow rate.

13. **SUSPENDED PIPE DIVERSIONS** may be used to divert water from the project area. **SUSPENDED PIPE DIVERSIONS** are designed using a 2-year storm frequency flow rate.

MAXIMUM SPAN FOR PIPE SUPPORTS, FEET

<table>
<thead>
<tr>
<th>Pipe Size</th>
<th>Maximum Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>2"</td>
<td>0.168</td>
</tr>
<tr>
<td>3"</td>
<td>0.138</td>
</tr>
<tr>
<td>4"</td>
<td>0.064</td>
</tr>
</tbody>
</table>

NOT TO SCALE

REFERENCES

INDEX NO

SECTION A-A

SECTION B-B

SECTION C-C

SECTION D-D

SECTION E-E

SECTION F-F

SECTION G-G

SECTION H-H

SECTION I-I

SECTION J-J

SECTION K-K

SECTION L-L

SECTION M-M

SECTION N-N

SECTION O-O

SECTION P-P

SECTION Q-Q

SECTION R-R

SECTION S-S

SECTION T-T

SECTION U-U

SECTION V-V

SECTION W-W

SECTION X-X

SECTION Y-Y

SECTION Z-Z
SUSPENDED PIPE DIVERSION (UPSTREAM)

GENERAL NOTES

1. SUSPENDED PIPE DIVERSIONS MAY BE USED WHERE ADVERSE IMPACTS WILL NOT BE CAUSED BY THE CONSTRUCTION OF THE BOX CULVERT. SUSPENDED PIPE DIVERSIONS MAY BE USED WHERE ADVERSE IMPACTS WILL NOT BE CAUSED BY THE CONSTRUCTION OF THE BOX CULVERT.

2. THE CALIBER OF THE SUSPENDED PIPE DIVERSION SHALL BE SUCH THAT IT WILL NOT CAUSE ADVERSE IMPACTS ON THE UPLAND SLOPE.

3. THE SUSPENDED PIPE DIVERSION SHALL BE DESIGNED USING A 2-YEAR STORM FREQUENCY FLOW RATE.

4. SUSPENDED PIPE DIVERSIONS MAY BE USED TO ALLOW BOX CULVERT EXTENSIONS TO BE CONSTRUCTED WHILE SEPARATED FROM FLOWING WATER, IN THE DRY, THUS REDUCING SEDIMENTATION. FLEXIBLE PIPE DIVERSION MAY BE UTILIZED ON STREAMS WITH INTERMITTENT FLOW WHERE THE DURATION OF CONSTRUCTION IS EXPECTED TO BE BRIEF.

5. SUSPENDED PIPE DIVERSIONS MAY BE USED WHERE ADVERSE IMPACTS WILL NOT BE CAUSED BY THE CONSTRUCTION OF THE BOX CULVERT.

6. SUSPENDED PIPE DIVERSIONS MAY BE USED WHERE ADVERSE IMPACTS WILL NOT BE CAUSED BY THE CONSTRUCTION OF THE BOX CULVERT.

7. THE CALIBER OF THE SUSPENDED PIPE DIVERSION SHALL BE SUCH THAT IT WILL NOT CAUSE ADVERSE IMPACTS ON THE UPLAND SLOPE.

8. THE CALIBER OF THE SUSPENDED PIPE DIVERSION SHALL BE SUCH THAT IT WILL NOT CAUSE ADVERSE IMPACTS ON THE UPLAND SLOPE.

9. THE CALIBER OF THE SUSPENDED PIPE DIVERSION SHALL BE SUCH THAT IT WILL NOT CAUSE ADVERSE IMPACTS ON THE UPLAND SLOPE.

10. THE CALIBER OF THE SUSPENDED PIPE DIVERSION SHALL BE SUCH THAT IT WILL NOT CAUSE ADVERSE IMPACTS ON THE UPLAND SLOPE.

11. THE CALIBER OF THE SUSPENDED PIPE DIVERSION SHALL BE SUCH THAT IT WILL NOT CAUSE ADVERSE IMPACTS ON THE UPLAND SLOPE.

12. THE CALIBER OF THE SUSPENDED PIPE DIVERSION SHALL BE SUCH THAT IT WILL NOT CAUSE ADVERSE IMPACTS ON THE UPLAND SLOPE.

13. THE CALIBER OF THE SUSPENDED PIPE DIVERSION SHALL BE SUCH THAT IT WILL NOT CAUSE ADVERSE IMPACTS ON THE UPLAND SLOPE.

14. THE CALIBER OF THE SUSPENDED PIPE DIVERSION SHALL BE SUCH THAT IT WILL NOT CAUSE ADVERSE IMPACTS ON THE UPLAND SLOPE.

15. THE CALIBER OF THE SUSPENDED PIPE DIVERSION SHALL BE SUCH THAT IT WILL NOT CAUSE ADVERSE IMPACTS ON THE UPLAND SLOPE.

16. THE CALIBER OF THE SUSPENDED PIPE DIVERSION SHALL BE SUCH THAT IT WILL NOT CAUSE ADVERSE IMPACTS ON THE UPLAND SLOPE.

17. THE CALIBER OF THE SUSPENDED PIPE DIVERSION SHALL BE SUCH THAT IT WILL NOT CAUSE ADVERSE IMPACTS ON THE UPLAND SLOPE.

18. THE CALIBER OF THE SUSPENDED PIPE DIVERSION SHALL BE SUCH THAT IT WILL NOT CAUSE ADVERSE IMPACTS ON THE UPLAND SLOPE.

19. THE CALIBER OF THE SUSPENDED PIPE DIVERSION SHALL BE SUCH THAT IT WILL NOT CAUSE ADVERSE IMPACTS ON THE UPLAND SLOPE.

20. THE CALIBER OF THE SUSPENDED PIPE DIVERSION SHALL BE SUCH THAT IT WILL NOT CAUSE ADVERSE IMPACTS ON THE UPLAND SLOPE.

SUSPENDED PIPE DIVERSION (UPSTREAM) GENERAL NOTES

1. SUSPENDED PIPE DIVERSIONS MAY BE USED WHERE ADVERSE IMPACTS WILL NOT BE CAUSED BY THE CONSTRUCTION OF THE BOX CULVERT. SUSPENDED PIPE DIVERSIONS MAY BE USED WHERE ADVERSE IMPACTS WILL NOT BE CAUSED BY THE CONSTRUCTION OF THE BOX CULVERT.

2. THE CALIBER OF THE SUSPENDED PIPE DIVERSION SHALL BE SUCH THAT IT WILL NOT CAUSE ADVERSE IMPACTS ON THE UPLAND SLOPE.

3. THE CALIBER OF THE SUSPENDED PIPE DIVERSION SHALL BE SUCH THAT IT WILL NOT CAUSE ADVERSE IMPACTS ON THE UPLAND SLOPE.

4. SUSPENDED PIPE DIVERSIONS MAY BE USED WHERE ADVERSE IMPACTS WILL NOT BE CAUSED BY THE CONSTRUCTION OF THE BOX CULVERT.

5. THE CALIBER OF THE SUSPENDED PIPE DIVERSION SHALL BE SUCH THAT IT WILL NOT CAUSE ADVERSE IMPACTS ON THE UPLAND SLOPE.

6. SUSPENDED PIPE DIVERSIONS MAY BE USED WHERE ADVERSE IMPACTS WILL NOT BE CAUSED BY THE CONSTRUCTION OF THE BOX CULVERT.

7. THE CALIBER OF THE SUSPENDED PIPE DIVERSION SHALL BE SUCH THAT IT WILL NOT CAUSE ADVERSE IMPACTS ON THE UPLAND SLOPE.

8. THE CALIBER OF THE SUSPENDED PIPE DIVERSION SHALL BE SUCH THAT IT WILL NOT CAUSE ADVERSE IMPACTS ON THE UPLAND SLOPE.

9. THE CALIBER OF THE SUSPENDED PIPE DIVERSION SHALL BE SUCH THAT IT WILL NOT CAUSE ADVERSE IMPACTS ON THE UPLAND SLOPE.

10. THE CALIBER OF THE SUSPENDED PIPE DIVERSION SHALL BE SUCH THAT IT WILL NOT CAUSE ADVERSE IMPACTS ON THE UPLAND SLOPE.

11. THE CALIBER OF THE SUSPENDED PIPE DIVERSION SHALL BE SUCH THAT IT WILL NOT CAUSE ADVERSE IMPACTS ON THE UPLAND SLOPE.

12. THE CALIBER OF THE SUSPENDED PIPE DIVERSION SHALL BE SUCH THAT IT WILL NOT CAUSE ADVERSE IMPACTS ON THE UPLAND SLOPE.

13. THE CALIBER OF THE SUSPENDED PIPE DIVERSION SHALL BE SUCH THAT IT WILL NOT CAUSE ADVERSE IMPACTS ON THE UPLAND SLOPE.

14. THE CALIBER OF THE SUSPENDED PIPE DIVERSION SHALL BE SUCH THAT IT WILL NOT CAUSE ADVERSE IMPACTS ON THE UPLAND SLOPE.

15. THE CALIBER OF THE SUSPENDED PIPE DIVERSION SHALL BE SUCH THAT IT WILL NOT CAUSE ADVERSE IMPACTS ON THE UPLAND SLOPE.

16. THE CALIBER OF THE SUSPENDED PIPE DIVERSION SHALL BE SUCH THAT IT WILL NOT CAUSE ADVERSE IMPACTS ON THE UPLAND SLOPE.

17. THE CALIBER OF THE SUSPENDED PIPE DIVERSION SHALL BE SUCH THAT IT WILL NOT CAUSE ADVERSE IMPACTS ON THE UPLAND SLOPE.

18. THE CALIBER OF THE SUSPENDED PIPE DIVERSION SHALL BE SUCH THAT IT WILL NOT CAUSE ADVERSE IMPACTS ON THE UPLAND SLOPE.

19. THE CALIBER OF THE SUSPENDED PIPE DIVERSION SHALL BE SUCH THAT IT WILL NOT CAUSE ADVERSE IMPACTS ON THE UPLAND SLOPE.

20. THE CALIBER OF THE SUSPENDED PIPE DIVERSION SHALL BE SUCH THAT IT WILL NOT CAUSE ADVERSE IMPACTS ON THE UPLAND SLOPE.
NOTES:
1. INLET AND SPILLWAY LOCATIONS TO BE ADJUSTED TO FIT EXISTING SITE CONTOURS. (BASIN IS NOT NECESSARILY RECTANGULAR SHAPED)
2. BAFLES SHALL BE CONSTRUCTED OF 100% COCONUT (COIR) FIBER MATERIAL SUPPORTED BETWEEN POSTS WITH A WIRE MESH BACKING AS SHOWN BELOW. HOLES SHALL BE EVENLY SPACED THROUGH THE BAFLE.
3. FLOCCULANT SHALL BE PLACED AT THE INLET END OF THE BAFLE IN THE FLOCCULANT INTRODUCTION ZONE. FLOCCULANT CONDITION SHALL BE MONITORED AND SHALL BE REPLACED WHEN IT NO LONGER APPEARS TO BE EFFECTIVE.
4. DO NOT CONSTRUCT TEMPORARY SEDIMENTATION BASIN IN FLOODWAY.
5. TEMPORARY SEDIMENTATION BASIN SHALL BE CONSTRUCTED UTILIZING EXISTING GROUND SURFACE WHERE POSSIBLE TO MINIMIZE DISTURBANCE.

INLET LOCATION
1. INLET AND SPILLWAY LOCATIONS TO BE ADJUSTED TO FIT EXISTING SITE CONTOURS. (BASIN IS NOT NECESSARILY RECTANGULAR SHAPED)
2. BAFLES SHALL BE CONSTRUCTED OF 100% COCONUT (COIR) FIBER MATERIAL SUPPORTED BETWEEN POSTS WITH A WIRE MESH BACKING AS SHOWN BELOW. HOLES SHALL BE EVENLY SPACED THROUGH THE BAFLE.
3. FLOCCULANT SHALL BE PLACED AT THE INLET END OF THE BAFLE IN THE FLOCCULANT INTRODUCTION ZONE. FLOCCULANT CONDITION SHALL BE MONITORED AND SHALL BE REPLACED WHEN IT NO LONGER APPEARS TO BE EFFECTIVE.
4. DO NOT CONSTRUCT TEMPORARY SEDIMENTATION BASIN IN FLOODWAY.
5. TEMPORARY SEDIMENTATION BASIN SHALL BE CONSTRUCTED UTILIZING EXISTING GROUND SURFACE WHERE POSSIBLE TO MINIMIZE DISTURBANCE.

FLOW BAFFLE DETAIL
1. INLET AND SPILLWAY LOCATIONS TO BE ADJUSTED TO FIT EXISTING SITE CONTOURS. (BASIN IS NOT NECESSARILY RECTANGULAR SHAPED)
2. BAFLES SHALL BE CONSTRUCTED OF 100% COCONUT (COIR) FIBER MATERIAL SUPPORTED BETWEEN POSTS WITH A WIRE MESH BACKING AS SHOWN BELOW. HOLES SHALL BE EVENLY SPACED THROUGH THE BAFLE.
3. FLOCCULANT SHALL BE PLACED AT THE INLET END OF THE BAFLE IN THE FLOCCULANT INTRODUCTION ZONE. FLOCCULANT CONDITION SHALL BE MONITORED AND SHALL BE REPLACED WHEN IT NO LONGER APPEARS TO BE EFFECTIVE.
4. DO NOT CONSTRUCT TEMPORARY SEDIMENTATION BASIN IN FLOODWAY.
5. TEMPORARY SEDIMENTATION BASIN SHALL BE CONSTRUCTED UTILIZING EXISTING GROUND SURFACE WHERE POSSIBLE TO MINIMIZE DISTURBANCE.

FLOW BAFFLE DETAIL
1. INLET AND SPILLWAY LOCATIONS TO BE ADJUSTED TO FIT EXISTING SITE CONTOURS. (BASIN IS NOT NECESSARILY RECTANGULAR SHAPED)
2. BAFLES SHALL BE CONSTRUCTED OF 100% COCONUT (COIR) FIBER MATERIAL SUPPORTED BETWEEN POSTS WITH A WIRE MESH BACKING AS SHOWN BELOW. HOLES SHALL BE EVENLY SPACED THROUGH THE BAFLE.
3. FLOCCULANT SHALL BE PLACED AT THE INLET END OF THE BAFLE IN THE FLOCCULANT INTRODUCTION ZONE. FLOCCULANT CONDITION SHALL BE MONITORED AND SHALL BE REPLACED WHEN IT NO LONGER APPEARS TO BE EFFECTIVE.
4. DO NOT CONSTRUCT TEMPORARY SEDIMENTATION BASIN IN FLOODWAY.
5. TEMPORARY SEDIMENTATION BASIN SHALL BE CONSTRUCTED UTILIZING EXISTING GROUND SURFACE WHERE POSSIBLE TO MINIMIZE DISTURBANCE.